|
|
|
|
|
|
【作 者】 |
[美]乔治 G.斯皮罗(George G.Szpiro)著;王彩虹 译 |
|
【出 版 项】 |
北京:机械工业出版社,2014.6 |
|
【索 书 号】 |
F830.9/S709.1 |
|
【馆藏地点】 |
东三楼 第三书库 |
|
内容提要:
谁会想到一个喝得烂醉的水手在街上蹒跚的步伐,或细小微粒在液体中的随机运动,会成为描述股票市场价格波动的起点?这些过程,即布朗运动,被生物学家们用于研究进化论,被化学家和物理学家用于研究扩散过程——其中包括爱因斯坦和好几位诺奖得主,还被一位涉足股票市场的孤独数学家用于寻找金融世界的圣杯,赚取巨额财富。
跨越数个世纪的时间,遍布全球各地的数学家和金融奇才们不懈地寻找着能够精确估计价值和进行定价的方程。直到1973年,这一难题的答案才被解开:费希尔?布莱克、迈伦?斯科尔斯和罗伯特?默顿发现了这一难以捉摸的公式——该成就让斯科尔斯和默顿在1997年获得了诺贝尔经济学奖。
这本书讲述了关于天才、奋斗和创新的故事,也讲述了人类被贪婪和傲慢占据时会发生什么。
乔治G.斯皮罗博士是一位由数学家改行的记者。他现在是世界上最古老的报纸之一——瑞士《新苏黎世报》的以色列籍通讯记者,曾在《计量经济学》《物理学评论》和其他期刊上发表过文章,是《开普勒的猜想》《数字的秘密生活》《庞加莱的奖项》和《数字规则》的作者,现居于耶路撒冷和纽约。
目 录:
前言
序
第1章鲜花和香料
股票交易所是每个人的竞赛场……哲学家会发现野蛮的行为,数学家会发现非理性的数字,占星家可以识别出他们的幸运星,诗人可以提高他们的想象力,律师可以提高他们的诡辩术……
第2章最初的时候
买股票成了巴黎人最喜爱的消遣活动。令人激动的场景和巨大的噪声让附近法庭的法官不得不向市政当局投诉,因为他们没办法听清律师对案件的辩论了。大量一夜暴富的故事由此发生。一位马车夫发大财之后雇用起了自己的马车夫,第一次乘坐自己的马车时,这位曾经的仆人忘记了自己的身份而直接跳到了马车夫的位置上。
第3章白手起家
1863年,一位自学成才的股票经纪人,白天在交易所工作,晚上则蛰伏在与人合租的小阁楼里撰写文章。他的观察结果具有突破性的精确度:股票价格的变动与时间的平方根成正比。若在20世纪,这套理论完全可以获得诺贝尔物理学奖和经济学奖。他究竟如何获得撰写该专著所需的知识工具,至今仍然是个谜,但现代金融理论由此诞生。
第4章银行家的秘书
第一位在经济事件分析中引入图形概念,并用几何框架来认识经济现象的人是会计师勒菲弗。他曾任银行巨头罗斯柴尔德的私人秘书。勒菲弗是一名非常敏锐的观察者,他首创了用图形来解释期权交易。在勒菲弗的经济模型中,股票交易所就像心脏,促使血液在血管中流动,而政府和投机这两个“器官”则影响资金流的功能。
第5章被冷落的教授
正式的金融市场研究始于20世纪初的世纪之交。第一个基础性的数学理论诞生于一个30岁的法国数学学生的一篇学术论文中,他的名字是路易斯?巴舍利耶。尽管这篇文章获得了高度赞扬,但却被遗忘了将近50年。
第6章植物学、物理学和化学
从布朗到爱因斯坦,从诺贝尔奖得主佩兰、斯维德伯格到居里夫人、郎之万,都曾围绕布朗运动开展研究。悬浮在液体中的物体会朝各个方向随机运动,那这些物体会运动多远呢?研究结论与金融理论有着惊人的相似——特定时间之后微粒的位移与所花的时间的平方根成正比。
第7章迪斯科舞者和闪光灯
随机运动这一现象首先被生物学家所发现,接着被物理学家和化学家以及之后的数学家和统计学家所研究。最终,这个主题也会在经济学和金融学中变得非常重要。1905年6月27日,就在爱因斯坦将他的论文提交给《物理学年鉴》的11周后,科学杂志《自然》上刊登了一封读者来信,寻求解决某一问题的帮助……
第8章被忽略的论文
巴舍利耶使用物理学家傅里叶的热学,分析了股票价格等于或大于某个特定阈值的概率。他还对某证券在未来某确定日期之前达到某特定价格的概率展开了分析。由于距离该确定日期还有很多天,他的分析出现了维度多得吓人的多重积分,但他“采用一种简短、简洁和优雅的方式解出了它”,即布朗运动的“反射原则”。巴舍利耶得到了一个有趣的结论:某证券在某特定日期达到或超过某特定价格的概率,等于它在该日期之前的任何一个时刻达到或超过该价格的概率的一半。
第9章另一位先驱
一本出版于1908年只有80页的小册子,隐藏着一个令人预料不到的模型:期权定价公式。在经过对变量的一些修改和重新解释之后,这个公式与一位英雄在20世纪70年代所发现的由此斩获诺贝尔奖的公式非常相似。
第10章对不可测量进行测量
柯尔莫戈洛夫的《概率论基础》代表了一个转折点。通过给概率积分学引入一个公理化的基础,这本书把概率论及其方法带入了一个新纪元。自1933年起,物理学家、赌徒和股市玩家终于可以自信地使用概率微积分了,它不再被视为一种奇谈怪论,而是发展成了一种科学理论。
第11章对随机性进行解释
回顾微积分的发展:牛顿和莱布尼茨提出了微分和积分,巴舍利耶是首位用微积分学来处理与概率论相关问题的数学家。但仍存在一个问题,简单微积分可处理连续数学函数,也就是说它们是可微的,但布朗运动这一理解金融市场的关键,没有一处是平滑的,也就是说它不可微。发展随机微积分的任务就落在了伊藤清身上。
第12章一封密信
2000年5月18日,巴黎科学院的一个特别委员会被召集来完成一项特殊任务,他们需要决定一封信的命运,这封信已经被保管了60年。这封编号为11.668的密信,在1940年2月通过军队邮政从洛林前线邮来,信的作者,年仅25岁的士兵沃尔夫冈在被德军包围之时,烧毁了随身的所有研究成果后饮弹自尽。这封尘封的信中,有着令人震惊的结论。
第13章对数的作用
100年前,经济学理论一直试图从历史中获得指引,总是用叙述性文字来描述现象和事件。今天,经济学家使用数学语言。1947年,美国经济学家保罗?萨缪尔森决定皈依数学,其举动可与伽利略相媲美。在17世纪,自然哲学家伽利略使用数学来解释自然现象。在伽利略之前,数学只用来处理抽象概念,与现实世界没有任何联系。
第14章诺贝尔奖得主
自从哈佛拒绝给保罗?萨缪尔森提供一个职位,而这位新毕业的博士选择到麻省理工任教开始,麻省理工的研究所就成为所有愿意学习、教授和研究金融学理论的人梦寐以求之地。我们故事的三位关键人物——费希尔?布莱克、迈伦?斯科尔斯和罗伯特?默顿都来自麻省理工。
第15章三个火枪手
1968年或1969年的某个时间,大致在萨缪尔森和罗伯特?默顿正努力钻研期权定价课题的时候,费希尔?布莱克开始对权证定价的公式感兴趣了。他研究的起点是资本资产定价模型。
第16章爬得越高……
因期权定价公式而荣获诺贝尔奖的默顿和斯科尔斯有理由感到满意。他们刚登上了科学阶梯的最高一级,与瑞典国王一同享受了丰盛的晚宴;作为长期资本管理公司的领导层和创始人,他们挣了很多钱。长期资本管理公司是对冲基金中的精英,管理着接近40亿美元的资产,但这两位诺贝尔奖得主并不知道未来将会发生什么……
第17章……跌得越惨
长期资本管理公司的投资策略既简单又漂亮,基本上,它是按照布莱克、斯科尔斯和默顿的期权定价理论来进行的。不过长期资本管理公司的目的是想赚钱,而不仅仅是构建无风险组合。1998年公司达到成功的顶峰,资金规模达75亿美元,但是短短5周里所发生的事件就推倒了这只巨兽。
第18章长尾
为什么我们要关心一些不常发生的事件呢?我们是否高估了它们的重要性?答案是:否。股票市场中真正有意思的事情,像暴涨和暴跌,并不位于钟形曲线的中间区域,而是在它的尾部,这就是正态分布让我们误入歧途的地方。这些可能导致惊人的失败,如长期资本管理公司的崩溃。不过把这些失常归罪于布莱克、斯科尔斯和默顿显然是极其错误的,就像把重大交通事故归罪于牛顿的运动定律一样。
附录 关于布莱克-斯科尔斯公式推导过程的初学者指南
注释
译者后记